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Single-particle survival in parallel gated trapping
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Any chemical reactionA*1B→C whose progress is modulated by another reaction of the formA*�A is
said to be gated. The gating reactionA*�A represents a reversible fluctuation from a reactive stateA* to an
unreactive stateA not reacting withB. Reversibly blocked chemical reactions, conformational fluctuations in
proteins, and reactions occurring within biomembranes or involving biological molecules have all been studied
recently in contexts related to gating. This article calculates certain trapping rates and mean survival times in
the presence of a single gated trap. Unlike previous methods, the formalism in this paper is based directly on
trapping rates and not on Green’s functions. The trapping rate formalism leads quite naturally to explicit
solutions for some recently developed~‘‘parallel’’ ! gating models, solutions that might be quite difficult to
derive within a Green’s-function formalism. These solutions give time-dependent rate coefficients for parallel
gated chemical reactions.@S1063-651X~96!05512-2#

PACS number~s!: 05.60.1w, 05.40.1j, 02.50.Ey, 82.20.2w
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I. INTRODUCTION

Any chemical reactionA*1B→C whose progress is
modulated by another reaction of the formA*�A is said to
be gated. The gating reactionA*�A represents a reversibl
fluctuation from a reactive stateA* to an unreactive stateA
not reacting withB. In some situations, a fourth speciesD
may be responsible for the interconversionA*1D�A.
When other effects due to the blockerD can be neglected
reversible chemical blocking is completely equivalent to g
ing.

Several recent articles have investigated gating@1,2#, dy-
namic trapping@3,4#, or other related problems@5#. Early
studies of gating@6,7# derived the Smoluchowski mean-fie
rate constant@8–10# for a single ligand binding to a singl
gated protein. Gating has also been studied in other biol
cal contexts, e.g., reactions occurring within biomembra
@4# or small molecules migrating through heme proteins@5#.
Medical therapies can also involve blocking chemical re
tions. Gating and blocking have practical implications, p
ticularly as medical therapies, just by changing effective
action rate constants@11#.

Green’s-function methods can solve some gating pr
lems explicitly @3,4#, e.g., the following ‘‘multiple Poisson
gating’’ model for a ligand binding to a protein@2#. Assume
a protein hasJ structural components, each of which fluct
ates between two states, one active~1! and permissive for

binding, the other blocked~2!. The fluctuations (2)

b j

a j

(1) for the j51,...,J components are assumed to be ind
pendent Poisson processes with rate constantsaj andbj . In
this model, the ligand can bind only when all theJ protein
components are active~1!.

Perhaps not literally, but as a metaphor, the gates in

model are arranged ‘‘in series’’: all the gates (2)

b j

a j
(1) in

the seriesj51,...,J must be open to permit passage~i.e.,

*FAX: ~301! 435-2433. Electronic address: spouge@nih.go
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ligand binding!. The series metaphor suggests the exami
tion of contrasting ‘‘parallel’’ gating models, where just

single open gate (2)

b j

a j
(1) suffices to permit passage. Be

cause the Green’s functions for parallel gating are quite co
plicated, they only furnish formal solutions@2#. On the other
hand, because this article shows that the trapping rates
parallel gating have a simple form, it can exploit them
determine explicit mean survival times, trapping rates, a
Smoluchowski rate constants@8–10# for a single particle
moving in the presence of a single, parallel gated, static t

Throughout, gating is assumed independent of part
movement, which simplifies the analysis when partic
movement and gating are combined into a single proc
The states of this combined process@1–4,12,13# are ordered
pairs indicating both the particle position and the gating st
at time t. The concept of ‘‘failed first trapping opportuni
ties’’ @11# then solves parallel gating problems by relati
the gated and ungated trapping rates.

The plan of this article follows. Section II gives gener
results relating gated and ungated trapping. Section III t
gives some parallel gating trapping rates, which are use
derive mean survival times, trapping rates, and rate const
for the corresponding parallel gating models. Section IV d
scribes some further implications and elaborations of th
results.

II. GENERAL RESULTS FOR TRAPPING RATES

The two pivotal results in this section are an auxilia
result in Eq.~4!, which relates the stationary density of pa
ticle movement and the reactivity of a single, ungated t
directly to the time-dependent Smoluchowski rate coe
cient; and the main result in Eq.~7!, which relates the gated
and ungated trapping rates using the concept of failed
trapping opportunities.

Consider a single particle moving in some spatial co
tinuum V without any traps, e.g., a three-dimensional v
ume. If the particle movement is homogeneous in time,
Green’s functionG~x,t ux0! is by definition the probability
421
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422 55JOHN L. SPOUGE
density that a particle initially at positionx0 will be at posi-
tion x at time t later.

Often, the particle movement has a stationary densityr~x!
that it leaves unchanged. Usually, the stationary den
of physical interest is a~t→`! equilibrium density. By
definition, any stationary densityr satisfies r~x!
[*VG~x,t ux0!r~x0!dx0 at all timest. ~This article uses[ to
imply equality for all values of a variable. Here, e.g., t
equation holds for allt>0.!

When traps are present, letS~t ux0! be the probability that
a particle initially at positionx0 remains untrapped at timet
later. The character of the traps can remain unspecified
the time being: they may be single or multiple and they m
be discrete or continuous~Refs. @2, 14# contain examples!.
By definition, the trapping rate s~t ux0! satisfies
* 0
t s~tux0!dt:512S~t ux0! ~:5denotes a definition!. In this

article,s~t ux0! is a convenient fundamental quantity;S~t ux0!
can be derived froms~t ux0! if necessary.

The time-dependent Smoluchowski rate coefficient

k~ t !:5E
V

s~ tux0!r~x0!dx0 ~1!

is the trapping rate starting from the distributionr. Since
equations will generally be more useful to us after Lapla
transformation

k̂~s!5E
V

ŝ~sux0!r~x0!dx0 , ~2!

where the carets denote Laplace transforms,
f̂ (s):5* 0

`e2stf (t)dt.
In general, there are two cases:~i! *Vr~x!dx5` ~typified

by free Brownian motion in three dimensions! and ~ii !
0,*Vr~x!dx,` ~typified by Brownian motion in a finite
volume with reflecting boundaries!. The following assumes
that *Vr~x!dx5` and defers the case 0,*Vr~x!dx,` to
Sec. IV.

The asymptotic rate of trappingk` :5limt→`k(t), if it ex-
ists, provides the Smoluchowski rate constant for mean-fi
approximations to chemical kinetics@8–10#. Standard theo-
rems@15# showk`5limt→`k(t)5lims→0sk̂(s). Since many
gating results are more easily phrased in terms of chara
istic timesk`

21 than ratesk` , it is useful@2# to define

l̂~s!:5@sk̂~s!#215H sE
V

ŝ~sux0!r~x0!dx0J 21

, ~3!

so thatk `
215l̂~0!.

From now on, assume a single ungated point trap at
sition r5a. For clarity, equations that pertain only to sing
ungated point traps will be flagged as follows: the usual s
variablex will be replaced byr and the state spaceV will be
replaced by~a volume! V. Single point traps are importan
because when symmetries reduce trapping problems o
continuum~e.g., three-dimensional Brownian motion in th
presence of a partially absorbing sphere! to trapping prob-
lems on a line, trapping surfaces reduce to trapping poi
Although the volumeV is then reduced to a subset of a lin
Sec. IV examines lattice applications, whereV retains a di-
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mensiond.1. The lattice applications justify the continue
use of boldface vector notation below.

Define the reactivityk of a point trapr5a to be the prob-
ability per unit time that a particle atr5a becomes trapped
Perfect absorption atr5a is included in the following analy-
sis as a limiting casek→` of partial absorption.

Physical interpretation justifies the following identity fo
all times t:

kr~a![E
V
s~ tur0!r~r0!dr01kr~a!E

0

t

s~tua!dt. ~4!

Start from the stationary densityr. When particles are
trapped atr5a, replace them so that the densityr~a! is main-
tained atr5a. Since there is effectively no trapping now, th
stationary densityr~r ! is also maintained at every positionr .
At any time t, the left-hand side of Eq.~4! is the rate at
which particles are trapped and replaced to maintain the d
sity r~a! at r5a. The right-hand side displays two contribu
tions to this particle turnover:~i! particles that are being
trapped and replaced for the first time@*Vs~t ur0!r~r0!dr0#
and ~ii ! particles that were trapped in the time interv
(t2t,t2t1dt] and replaced@kr~a!dt#, and then trapped
again at timet @s~tua!#.

Equation~4! transforms to

E
V
ŝ~sur0!r~r0!dr05kr~a!s21@12ŝ~sua!#. ~5!

Thus, for a single partially absorbing point trapr5a, Eqs.~3!
and ~5! show

sk̂~s!5@ l̂~s!#215kr~a!@12ŝ~sua!#. ~6!

„Equation~6! can be derived without Eq.~4!, using Eqs.~8!
and ~10! in Ref. @2#, the equationŜ~sux0!5s21@12ŝ~sux0!#,
and Eqs.~2! and ~3! in this paper.…

We now superimpose gating on the point trap atr5a. The
following gives the bare essentials of single-trap gatin
since a more general discussion of multiple-trap gating
given elsewhere@2#.

Briefly, a gated system has, in addition to the abo
particle-trap structure, a gating stateq that evolves in a gat-
ing state spaceVQ5$q1,q2,...,qN%, whereN is finite. Above,
the ungated trap atr5a traps with a constant reactivityk, but
with gating its reactivityk depends on the gating stateqi .
Thus, when the gating state becomesqi , the reactivity at
r5a becomes k~qi!, i51,2,...,N. The ‘‘gated state’’
x5~q,r ! completely specifies the particle-trap system and
the ordered pair specifying both the gating state and part
position. The gated statex evolves in a ‘‘gated state space
V5VQ3V.

Note that the terms ‘‘gating state’’ and ‘‘gated state’’ a
used to distinguish betweenq and x5~q,r !. Note also that
integrals*Vdx overV5VQ3V are an implicit combination
of a gating sum(qPVQ

and a continuum integral*Vdr .
We now restrict the discourse to parallel gating, as

scribed in the Introduction. In parallel gating,k~qi![k for
i51,...,N21 andk~qN!50. Thus a parallel gated trap has
constant reactivityk, except for the gating stateqN5~2!,
corresponding to the unreactive stateA of the Introduction.
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55 423SINGLE-PARTICLE SURVIVAL IN PARALLEL GATED . . .
Parallel gating can be solved by regarding the unreac
stateqN5~2! as a perturbation on the ungated trap. Assu
thats~t ur0! would be the trapping rate if the reactivity atr5a
were always the constantk. The trapping rates~t ur0! corre-
sponds to ‘‘first trapping opportunities’’@11#, which may fail
occasionally because of the~2! gating state: with gating, no
all trapping opportunities actually lead to trapping. L
s2~t uq0,r0! denote the rate at which first trapping opportu
ties fail @s for trapping,2 for failure because of the~2!
gating state#.

If a first trapping opportunity fails, the particle is atr5a
and the trap is unreactive~2!. Thus the gated state is~2,a!.
Assume that~2,a! is a regenerative state for the system, i.
when the state~2,a! occurs, the system’s past and its futu
are independent. By conditioning on the first trapping opp
tunity, the actual gated trapping ratesg~t uq0,r0! can be di-
vided into two contributions

sg~ tuq0 ,r0!5s~ tur0!2s2~ tuq0 ,r0!

1E
0

t

s2~tuq0 ,r0!sg~ t2tu2,a!dt. ~7!

The first contribution@s~t ur0!2s2~t uq0,r0!# represents first
trapping opportunities that succeeded; the second contr
tion ~the integral! represents first trapping opportunities th
failed, but where the particle was trapped later anyway. T
transform of Eq.~7! is

ŝg~suq0 ,r0!5ŝ~sur0!2ŝ2~suq0 ,r0!

1ŝ2~suq0 ,r0!ŝg~su2,a!. ~8!

Substitute~q0,r0!5~2,a! into Eq. ~8!, solve for ŝg~su2,a!,
and substitute back into Eq.~8! to get

ŝg~suq0 ,r0!5ŝ~sur0!2ŝ2~suq0 ,r0!
12ŝ~sua!

12ŝ2~su2,a!
.

~9!

To derive an equation forl̂g(s) for the gated trap from
Eq. ~3!, Eq. ~9! must be multiplied byr~x0!5r~q0,r0!,
summed with respect toq0, integrated with respect tor0, and
multiplied bys, all this being followed by taking reciprocals
We now prepare some preliminary simplifications for t
task.

If the densityr~q0,r0! of gated states is stationary, so a
the marginal probabilitiesr~q0!:5*Vr~q0,r0!dr0 and mar-
ginal probability densitiesr(r0):5(q0PVV

r(q0 ,r0). As-
sume the independence of the gating state and particle p
tion, so thatr~q0,r0!5r~q0!r~r0!.

@As an aside, in the case*Vr~r !dr5` the stationary den-
sity r is often normalized so thatr~r !→1 at infinity. The
independence conditionr~q,r !5r~q!r~r ! conveniently dis-
tributes the densityr~r ! among the gating statesq, thereby
retaining the usual normalization(qPVQ

r(q,r )5r(r )→1 at
infinity.#

Now, if the initial gating probabilityr~q0! is stationary, it
is also stationary at the first trapping opportunity. Thus
fraction r~2! of first trapping opportunities fail. In math
ematics, this says that for all initial particle positionsr0,
e
e

t

,

r-

u-
t
e

si-

a
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q0PVQ

ŝ2~suq0 ,r0!r~q0!5r~2 !ŝ~sur0!. ~10!

Multiply Eq. ~9! by r~q0,r0! and integrate over
V5VQ3V to get

E
V

ŝg~suq0 ,r0!r~q0 ,r0!dq0dr0

5E
V
ŝ~sur0!r~r0!dr0

3F12r~2 !
12ŝ~sua!

12ŝ2~su2,a!G , ~11!

becauser~q0,r0!5r~q0!r~r0! and(q0PVQ
r(q0)51, and be-

cause of Eq.~10!. Multiply by s, take reciprocals, and not
Eqs.~5! and~6!. The result, in a form most useful to prese
purposes, is

l̂g~s!5l̂~s!1H kr~a!
12ŝ2~su2,a!

r~2 !
2@ l̂~s!#21J 21

.

~12!

To determineŝ2~su2,a! in Eq. ~12!, let Q~2,t u2! be the
gating Green’s function, which gives the probability that
trap starting in the~2! state will be in the~2! state at timet
later. Since particle movement and gating are independ
the rate at which failed first trapping opportunities occur
a particle presently at~2,a! is s2~t u2,a!5s~t ua!Q(2,tu2),
since a failed first trapping opportunity means that the p
ticle returned tor5a and would have been trapped, exce
that the gating state also returned to~2!. As a transformed
equation, this gives

ŝ2~su2,a!5E
0

`

e2sts~sua!Q~2,tu2 !dt. ~13!

III. SURVIVAL RESULTS FOR PARALLEL
GATED TRAPPING

This section gives solutions for three specific models
parallel gating. The first model, Poisson gating, has b
solved before@2,7#, but, nevertheless, provides a simple pr
totype for parallel gating. Poisson gating provides a basis
solving the second model, double parallel Poisson gat
explicitly. This model is the special caseJ52 of the third
model, multiple parallel Poisson gating, which is solved i
plicitly as a generalization of theJ52 case.

A. Poisson gating

In Poisson gating, there are only two gating states,
reactive and the other unreactive. The reactive stateq15~1!
permits trapping, whereas the unreactive stateq25~2! inhib-

its it completely. The interconversions (2)

b0

a0
(1) are Pois-

son processes with rate constantsa0 andb0.
For Poisson gating @2#, the probabilities

rpg~2!5b0~a01b0!
21 and rpg~1!5a0~a01b0!

21 are sta-
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424 55JOHN L. SPOUGE
tionary, while the gating Green’s function relevant to E
~13! is

Qpg~2,tu2 !5rpg~2 !1rpg~1 !e2~a01b0!t. ~14!

Equations~13! and ~14! and the shift property of Laplac
transformsf̂ (s1a)5* 0

`e2st[e2at f (t)]dt give

ŝpg2~su2,a!5rpg~2 !ŝ~sua!1rpg~1 !ŝ~s1a01b0ua!.
~15!

Recall Eq. ~6!, which gives ŝ(s) in terms of l̂~s!. Since
rpg(2)/rpg(1)5b0/a0, Eq. ~15! substituted in Eq.~12!
yields

l̂pg~s!5l̂~s!1
b0

a0
l̂~s1a01b0!, ~16!

in agreement with previous results@2,7#.

B. Double parallel Poisson gating

In double parallel Poisson gating, two components~e.g.,
possibly the particleand the trap! undergo Poisson gatin
and trapping is unreactive only if both components
blocked~2!. With subscripts 1 and 2 referring to the com
ponents, Eq.~14! and its notation are easily extended to gi

Qdp~2,tu2 !5@r1~2 !1r1~1 !e2~a11b1!t#

3@r2~2 !1r2~1 !e2~a21b2!t#. ~17!

Equations~13! and ~17! yield

ŝdp2~su2,a!5r1~2 !r2~2 !ŝ~sua!1r1~2 !r2~1 !

3ŝ~s1a21b2ua!1r1~1 !r2~2 !

3ŝ~s1a11b1ua!1r1~1 !r2~1 !

3ŝ~s1a11b11a21b2ua!. ~18!

When substituted in Eq.~12!, Eq. ~18! gives

l̂dp~s!5l̂~s!1H Fb1

a1
l̂~s1a11b1!G21

1Fb2

a2
l̂~s1a21b2!G21

1Fb1b2

a1a2
l̂~s1a11b11a21b2!G21J 21

, ~19!

derived much like Eq.~16!. Through Eq.~3!, Eq. ~19! im-
plicitly relates the transformed ratesk̂dp(s) and k̂(s) for the
double gated and ungated problems. Also, since the cha
teristic time k dp`

21 5l̂dp~0! and the ungated characterist
time k`

215l̂~0!, settings50 in Eq. ~19! gives

kdp`
21 5k`

211H Fb1

a1
l̂~a11b1!G21

1Fb2

a2
l̂~a21b2!G21

1Fb1b2

a1a2
l̂~a11b11a21b2!G21J 21

. ~20!
.

e

c-

C. Multiple parallel Poisson gating

In multiple parallel Poisson gating, the unreactive st
requiresJ Poisson components to be blocked~2!:

Qmp~2,tu2 !5)
j51

J

@r j~2 !1r j~1 !e2~a j1b j !t#. ~21!

Just as in Poisson gating or double parallel Poisson gat
Eq. ~13! permitsŝmp2~su2,a! to be written down explicitly
from Eq. ~21!.

Equation~19! generalizes to

l̂mp~s!5l̂~s!1H (
j51

J Fb j

a j
l̂~s1a j1b j !G21

1 (
j ,k51
jÞk

J Fb jbk

a jak
l̂~s1a j1b j1ak1bk!G21

1•••

1F S )
j51

J
b j

a j D l̂S s1(
j51

J

~a j1b j !D G21J 21

.

~22!

By analogy with Eq.~19!, Eq. ~22! implicitly determines the
transformed rate k̂mp(s) and characteristic time
kmp̀

21 5l̂mp~0! for multiple parallel Poisson gating.

IV. DISCUSSION

This article has provided a trapping rate formalism f
solving problems with a single moving particle in the pre
ence of a single, parallel gated, static trap when gating
independent of the particle movement. The solution for
multiple parallel Poisson gating model Eq.~22! can be rep-
resented schematically asl̂mp5l̂1$(@~b/a!l̂#21%21. As a
contrast, the Introduction described the multipleserial Pois-
son gating model, which has the schematic solut

l̂mg5l̂1$(~b/a!l̂% @see @2#, Eq. ~34!#. The solutions for
multiple serial and parallel Poisson gating bear an imper
but striking resemblance to serial and parallel electri
resistances: R5(Ri and $(Ri

21%21. Thus our gating no-
menclature is apt, since it suggests both the modeling m
phors and the solution forms.

The trapping rate formalism developed here, like Gree
function formalisms@2–4#, can be extended to lattice prob
lems if continuum integrals*Vdx are replaced by lattice
sums(xPV . Also, Sec. III of Ref.@2# shows how to usel̂~s!
in its Eq. ~20! to relate gated and ungated mean survi
times in the case 0,*Vr~x!dx,`.

Zhou and Szabo@1# have extended Smoluchowski theo
to include gating effects for a single trap surrounded by m
tiple particles. In their theory, a gated trap gives differe
results from independently gated particles. Their solutions
requirek(t) in Eq. ~1! from the corresponding gated single
particle, single-trap problem, however. The formalisms
this paper and Ref.@2# are therefore particularly well adapte
to the Zhou-Szabo theory because they rel
k̂(s)5[sl̂~s!#21 for the gated and ungated problem
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This article clarifies some points in gating theory by e
phasizing trapping rates instead of Green’s functions@2–4#.
For example, Eq.~7! requires that the system regenerate o
when the particle is at a trap. Regeneration at other posit
~e.g., as in a fully Markovian particle movement! is unnec-
, J
-

y
ns

essary. The physical interpretation of Eq.~7! also naturally
emphasized trapping opportunities, a concept already fo
useful for analyzing the blocking of viral attachment@11#.
These observations may further simplify the theories
blocking and gating.
ses
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