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Any chemical reactio* + B— C whose progress is modulated by another reaction of the fofar A is
said to be gated. The gating reactiafi= A represents a reversible fluctuation from a reactive atéo an
unreactive staté not reacting withB. Reversibly blocked chemical reactions, conformational fluctuations in
proteins, and reactions occurring within biomembranes or involving biological molecules have all been studied
recently in contexts related to gating. This article calculates certain trapping rates and mean survival times in
the presence of a single gated trap. Unlike previous methods, the formalism in this paper is based directly on
trapping rates and not on Green'’s functions. The trapping rate formalism leads quite naturally to explicit
solutions for some recently developétparallel”) gating models, solutions that might be quite difficult to
derive within a Green’s-function formalism. These solutions give time-dependent rate coefficients for parallel
gated chemical reactiongS1063-651X96)05512-2
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I. INTRODUCTION ligand binding. The series metaphor suggests the examina-
tion of contrasting “parallel” gating models, where just a

Any chemical reactionA* +B—C whose progress is
modulated by another reaction of the fo&hi = A is said to

be gated. The gating reactidt = A represents a reversible
fluctuation from a reactive sta#®* to an unreactive stat&@
not reacting withB. In some situations, a fourth specibs

single open gate{)%(ﬂ suffices to permit passage. Be-
cause the Green’s functions for parallel gating are quite com-
plicated, they only furnish formal solutiof2]. On the other
hand, because this article shows that the trapping rates for
parallel gating have a simple form, it can exploit them to

mz;y be hresponsmkz for thﬁ |Elterc|:<%nver3|ng+Dl<:>A.d determine explicit mean survival times, trapping rates, and
When other effects due to the blockBr can be neglected, g qychowski rate constanf8—10] for a single particle

reversible chemical blocking is completely equivalent to gat'moving in the presence of a single, parallel gated, static trap.
Ing. _ . _ Throughout, gating is assumed independent of particle
Several recent articles have investigated gathgl, dy-  movement, which simplifies the analysis when particle
namic trapping[3,4], or other related problemS]. Early  movement and gating are combined into a single process.
studies of gatian,?] derived the Smoluchowski mean-field The states of this combined procégs_4,]_2,]_3 are ordered
rate constanf8—10 for a single ligand binding to a single pairs indicating both the particle position and the gating state
gated protein. Gating has also been studied in other biologiat timet. The concept of “failed first trapping opportuni-
cal contexts, e.g., reactions occurring within biomembranesies” [11] then solves parallel gating problems by relating
[4] or small molecules migrating through heme protdfis ~ the gated and ungated trapping rates.
Medical therapies can also involve blocking chemical reac- The plan of this article follows. Section Il gives general
tions. Gating and blocking have practical implications, par-results relating gated and ungated trapping. Section Il then
ticularly as medical therapies, just by changing effective re-gives some parallel gating trapping rates, which are used to
action rate constanfd.1]. derive mean survival times, trapping rates, and rate constants
Green’s-function methods can solve some gating probfor the corresponding parallel gating models. Section IV de-
lems explicitly [3,4], e.g., the following “multiple Poisson scribes some further implications and elaborations of these
gating” model for a ligand binding to a prote[2]. Assume results.
a protein hagl structural components, each of which fluctu-
ates between two states, one active and permissive for

binding, the other blocked—). The fluctuations (—)2

(+) for the j=1,....J components are assumed to be inde- The two pivotal results in this section are an auxiliary
pendent Poisson processes with rate constangnd ;. In  result in Eq.(4), which relates the stationary density of par-
this model, the ligand can bind only when all tAeprotein ~ ficle movement and the reactivity of a single, ungated trap
components are activer). directly to the time-dependent Smoluchowski rate coeffi-

Perhaps not literally, but as a metaphor, the gates in thi§ient; and the main result in E(), which relates the gated
i ] aj ) and ungated trapping rates using the concept of failed first
model are arranged “in series”: all the gates X?(-ﬁ-) in" trapping opportunities.
the seriesj=1,...,J must be open to permit paésag&a., Consider a single particle moving in some spatial con-
tinuum Q without any traps, e.g., a three-dimensional vol-
ume. If the particle movement is homogeneous in time, the
*FAX: (301) 435-2433. Electronic address: spouge@nih.gov Green’s functionG(x,t|x,) is by definition the probability

II. GENERAL RESULTS FOR TRAPPING RATES

55 421



422 JOHN L. SPOUGE 55

density that a particle initially at positiox, will be at posi- mensiond>1. The lattice applications justify the continued
tion x at timet later. use of boldface vector notation below.

Often, the particle movement has a stationary density Define the reactivity of a point trapr =a to be the prob-
that it leaves unchanged. Usually, the stationary densityability per unit time that a particle at=a becomes trapped.
of physical interest is at—o) equilibrium density. By Perfect absorption at=a is included in the following analy-
definition, any stationary densityp satisfies p(x) sis as a limiting case—« of partial absorption.
=[G (X,t|xg)p(Xp)dx, at all timest. (This article uses= to Physical interpretation justifies the following identity for
imply equality for all values of a variable. Here, e.g., theall timest:
equation holds for alt=0.)

When traps are present, I(t|x,) be the probability that - t
a particle initially at positionc, remains untrapped at tinte kp(a)= fvo(t|ro)p(r0)dr0+ xp(a) jog( rlaydr. (4)
later. The character of the traps can remain unspecified for
the time being: they may be single or multiple and they mayStart from the stationary density. When particles are
be discrete or continuougRefs.[2, 14] contain examples  trapped at =a, replace them so that the densiig) is main-
By definition, the trapping rate oft|x,) satisfies tained arr =a. Since there is effectively no trapping now, the
Joo(rxgdr:=1-S(t|x,) (:=denotes a definitign In this  stationary density(r) is also maintained at every position
article, of(t|x) is a convenient fundamental quanti§(t|x,) At any timet, the left-hand side of Eq(4) is the rate at
can be derived fronw(t|x,) if necessary. which particles are trapped and replaced to maintain the den-

The time-dependent Smoluchowski rate coefficient sity p(a) atr=a. The right-hand side displays two contribu-
tions to this particle turnoveri) particles that are being
trapped and replaced for the first tind§, a(t|ry)p(ro)dr,]
and (ii) particles that were trapped in the time interval
(t—7,t—7+d7] and replaced kp(a)dr], and then trapped

is the trapping rate starting from the distributipn Since ~ @gain at timet [o(ra)].
equations will generally be more useful to us after Laplace Equation(4) transforms to
transformation

k(t):= f“ff(ﬂxo)f)(xo)dxo &)

_L&whwpuwdm=Kmamfﬁl—&wmu. 5)

k)= | atslronto)dn, @
@ Thus, for a single partially absorbing point trapa, Egs.(3)

. and(5) show

where the carets denote Laplace transforms, i.e.,

f(s):=/ge *'f(t)dt. sk(s)=[N\(s)] t=kp(a)[1—o(s|a 6
In general, there are two caséb: [p(x)dx=c (typified ($)=[Ms)] kp@[1=o(sa)l. ©)

by free Brownian motion in three dimensionand (i)  (Equation(6) can be derived without Eq4), using Eqs(8)

0<[op(x)dx<e (typified by Brownian motion in a finite  anq (10) in Ref. [2], the equatiorS(s|xg)=s {1—o(s|xo)],

volume with reflecting boundarigsThe following assumes gng Egs.(2) and(3) in this papei.

that [op(x)dx=2 and defers the case<Jqp(x)dx<e to We now superimpose gating on the point trap-as. The

Sec. IV. following gives the bare essentials of single-trap gating,

~ The asymptotic rate of trappirlg,:=lim,_..k(t), if it ex-  sjnce a more general discussion of multiple-trap gating is
ists, provides the Smoluchowski rate constant for mean-fieldiven elsewheré2).

approximations to c_hemical kingtitts—lQ]. Stan_dard theo- Briefly, a gated system has, in addition to the above
rems[15] showk..=lim,_..k(t) =lims_sk(s). Since many particle-trap structure, a gating staehat evolves in a gat-
gating resuIEsl are more eas[ly. phrased in terms of charactefng state spac€qo={0,dz,..-An}, WhereN is finite. Above,
istic timesk..” than rates.., it is useful[2] to define the ungated trap at=a traps with a constant reactivity, but
with gating its reactivityx depends on the gating state.
S - 1 - - Thus, when the gating state beconggs the reactivity at
Ms):=[skis)] "= SJQU(S|X°)p(X°)dX° C) r=a becomes «(q;), i=1,2,...N. The “gated state”
x=(q,r) completely specifies the particle-trap system and is
so thatk;lzf\(O). the _o_rdered pair specifying both the gating state and particle
From now on, assume a single ungated point trap at poRosition. The gated stateevolves in a “gated state space”
sition r=a. For clarity, equations that pertain only to single Q=0oxV. )
ungated point traps will be flagged as follows: the usual state Note that the terms “gating state” and “gated state” are
variablex will be replaced by and the state spad¢e will be ~ Used to distinguish betweem and x=(q,r). Note also that
replaced by(a volume V. Single point traps are important integralsfqdx over Q=0,XV are an implicit combination
because when symmetries reduce trapping problems on & @ gating SUWquQQ and a continuum integrd,dr.
continuum(e.g., three-dimensional Brownian motion in the  We now restrict the discourse to parallel gating, as de-
presence of a partially absorbing sphet@ trapping prob- scribed in the Introduction. In parallel gating(qg;)=« for
lems on a line, trapping surfaces reduce to trapping pointd.=1,... N—1 andx(qy)=0. Thus a parallel gated trap has a
Although the volumeV is then reduced to a subset of a line, constant reactivityx, except for the gating statgy=(—),
Sec. IV examines lattice applications, whé&feetains a di- corresponding to the unreactive stétef the Introduction.
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Parallel gating can be solved by regarding the unreactive ~ .
stateqy=(—) as a perturbation on the ungated trap. Assume > _(sldo.ro)p(ae)=p(—)a(slro). (10
thatof(t|r o) would be the trapping rate if the reactivityrata %<0q
were always the constaat The trapping rater(t|r,) corre-
sponds to “first trapping opportunitieg11], which may fail
occasionally because of tlie') gating state: with gating, not
all trapping opportunities actually lead to trapping. Let
o_(t|ge.ro) denote the rate at which first trapping opportuni- f &g(slqo,ro)p(qo,ro)dqodro
ties fail [o for trapping, — for failure because of th¢—) Q
gating staté

If a first trapping opportunity fails, the particle is ata :f o(s|ro)p(rg)drg
and the trap is unreactie-). Thus the gated state (s-,a). v
Assume that—,a) is a regenerative state for the system, i.e.,

Multiply Eg. (9) by p(ge.rg and integrate over
0=QyXV to get

, ' 1—o(s|a)
when the staté—,a) occurs, the system’s past and its future X[1—p(—) 1o d—al (11
are independent. By conditioning on the first trapping oppor- —o-(s|-.a)
tunity, the actual gated trapping rate(t|gqy,ro) can be di-
vided into two contributions g0 o becausep(qo.ro)=p(do)p(ro) and2q .0 p(do) =1, and be-
cause of Eq(10). Multiply by s, take reciprocals, and note
o4(t|go,To)=a(t|re) — o (t|qo,ro) Egs.(5) and(6). The result, in a form most useful to present
purposes, is
t
+foa_(r|q0,r0)ag(t—7-|—,a)d7-. (7) A A 1-5 (s|-.a) - -1
Ag(S)=N(s)+| kp(Q) T—[?\(S)]l} :
The first contribution[o(t|ro)—o_(t|ge.ro)] represents first 12
trapping opportunities that succeeded; the second contribu- R .
tion (the integral represents first trapping opportunities that 10 determines_(s|—.a) in Eq. (12), let Q(—t|-) be the

failed, but where the particle was trapped later anyway. Théating Green’s function, which gives the probability that a

transform of Eq.(7) is trap starting in thé—) state will be in the(—) state at time
later. Since particle movement and gating are independent,
04(S|0o,ro) = 0(S|ro) — & (S|, o) the rate at which failed first trapping opportunities occur for
o(SldoTo (A| 0 ( [qo 0 a particle presently at—,a) is o_(t|—,a)=0o(t|a)Q(—,t| —),
+0_(8]do,ro)og(s|—,a). (8)  since a failed first trapping opportunity means that the par-

) ticle returned tor=a and would have been trapped, except
Substitute(qg,ro)=(—,a) into Eq. (8), solve forog(SI—,a), that the gating state also returned(te). As a transformed
and substitute back into E¢8) to get equation, this gives

1_" . o
(5101 o) = (50)~ (5l o) o mr i (sl-a= [ et a9

—o_(s|—,a)°

9)

To derive an equation foig(s) for the gated trap from lll. SURVIVAL RESULTS FOR PARALLEL
Eq. (3), Eq. (9) must be multiplied byp(xg)=p(do,fo)s GATED TRAPPING

summed with respect @y, integrated with respect 1g, and This section gives solutions for three specific models of
multiplied bys, all this being followed by taking reciprocals. parallel gating. The first model, Poisson gating, has been
We now prepare some preliminary simplifications for thegg|yed beford2,7], but, nevertheless, provides a simple pro-

task. ) ) _ totype for parallel gating. Poisson gating provides a basis for

If the densityp(do.ro) of gated states is stationary, so are ggjying the second model, double parallel Poisson gating,
the marginal probabilitieg(qe):=/vp(do.ro)dro and mar-  eyplicitly. This model is the special case=2 of the third
ginal probability densitiesp(ro):=2q c0,r(do.fo)- AS-  model, multiple parallel Poisson gating, which is solved im-
sume the independence of the gating state and particle pogsticitly as a generalization of thé=2 case.
tion, so thatp(do,r o)=p(do)p(ro)-

[As an aside, in the caggp(r)dr=c the stationary den-
sity p is often normalized so thai(r)—1 at infinity. The ) _ )
independence conditiop(q,r)=p(q)p(r) conveniently dis- In Poisson gating, there are only two gating states, one
tributes the density(r) among the gating statey thereby ~ reactive and the other unreactive. The reactive sfate(+)

retaining the usual normalizati(ﬁlqe%p(q,r) =p(r)—1 at permits trapping, whereas the unreactive stgte(—) inhib-
ag

A. Poisson gating

infinity. ] its it completely. The interconversions-)=(+) are Pois-
Now, if the initial gating probabilityp(qy) is stationary, it Bo

is also stationary at the first trapping opportunity. Thus ason processes with rate constaagsand 3.

fraction p(—) of first trapping opportunities fail. In math- For Poisson gating [2], the probabilities

ematics, this says that for all initial particle positions ppg(—)=Bo(czo+,f;%o)’l and ppg(+)=ao(czovL,f;%o)’l are sta-
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tionary, while the gating Green’s function relevant to Eq.

(13 is

ng(_vt|_):ppg(_)+ppg(+)e7(0{0+ﬁo)t- (14

Equations(13) and (14) and the shift property of Laplace

transformsf (s+ a)=[ e~ STe” *'f(t)]dt give

a’pgf(s| - va):ppg(_)a'(s|a)+Ppg(+)a'(s+ a0+BO|a)-

15)

Recall Eqg.(6), which givesa(s) in terms of)A\(s). Since

Ppg( =) ppo(+) =B, Eq. (15 substituted in Eq.(12)
yields

Npg(S)=A(S)+ 5—2 NS+ ap+ Bo), (16)

in agreement with previous resul(tg,7].

B. Double parallel Poisson gating

C. Multiple parallel Poisson gating

In multiple parallel Poisson gating, the unreactive state
requiresJ Poisson components to be blocked):

J
Qmp<—,t|—>=jljl [pj(—)+pj(+)e @t (21)

Just as in Poisson gating or double parallel Poisson gating,
Eq. (13) permitsap,,_(s|—,a) to be written down explicitly
from Eq. (21).

Equation(19) generalizes to

Bj - o

J
me<s>=i(s>+[j21

J IBB -1
By -
+ 2 [Nt et Bt at B |+
J"k:kl ajak
]#F

J J -1y -1
In double parallel Poisson gating, two compone(ets., + H & N s+2 (ai+ B;) _
possibly the particleand the trap undergo Poisson gating =1 qj =
and trapping is unreactive only if both components are
blocked(—). With subscripts 1 and 2 referring to the com- (22
ponents, Eq(14) and its notation are easily extended to give

Qap(—tl=)=[pa(—)+ps(+)e” (1" F
X[pa(—)+pa(+)e” 2P (17)
Equations(13) and (17) yield
Ogp-(S|—,a)=p1(—)pa(—)a(s|a)+ pi(—)pa(+)
X a(s+ az+ Bola)+pi(+)pa(—)
X a(s+ay+ Bila)+py(+)pa(+)
X o (S+ ai+ B+ a+ Byla). (18

When substituted in Eq12), Eq. (18) gives

Nap(S)=N(S) +

B ~ 71
a—i \(s+ al-l-ﬁl)}

+

-1

BBz -

+ )\(S+C¥1+B1+a2+ﬁz)

-1)-1
] . (19

a o

derived much like Eq(16). Through Eq.(3), Eg. (19) im-
plicitly relates the transformed ratég,(s) andk(s) for the

double gated and ungated problems. Also, since the char

ac-

By analogy with Eq(19), Eq. (22) implicitly determines the
transformed rate kp,,(s) and characteristic time
kr;%,,,=)\mp(0) for multiple parallel Poisson gating.

IV. DISCUSSION

This article has provided a trapping rate formalism for
solving problems with a single moving particle in the pres-
ence of a single, parallel gated, static trap when gating is
independent of the particle movement. The solution for the
multiple parallel Poisson gating model E@2) can be rep-
resented schematically as,,=\+{S[(B/&)\]"}"" As a
contrast, the Introduction described the multipial Pois-
son gating model, which has the schematic solution
Amg=NH{Z(Bla)\} [see[2], Eq. (34)]. The solutions for
multiple serial and parallel Poisson gating bear an imperfect
but striking resemblance to serial and parallel electrical
resistances: R=3R; and {R; )% Thus our gating no-
menclature is apt, since it suggests both the modeling meta-
phors and the solution forms.

The trapping rate formalism developed here, like Green’s
function formalismg2—4], can be extended to lattice prob-
lems if continuum integrald,dx are replaced by lattice
sums2, . . Also, Sec. Il of Ref[2] shows how to us&(s)
in its Eq. (20) to relate gated and ungated mean survival
times in the case<Qfop(x)dx<<e.

Zhou and Szabgl] have extended Smoluchowski theory

. . . 71 _ . . ; N N
teristic time K gp..=M\qp(0) and the ungated characteristic (g jnclude gating effects for a single trap surrounded by mul-

time k., 1=\(0), settings=0 in Eq. (19) gives

-1

-1
kaloo:k;l+ i_i)\(al+ﬁl) + i—i)\(azﬂLﬂz)}
-1)-1
+ ilﬁz )\(a1+,81+a2+ﬂz)} ] . (20)
1a2

tiple particles. In their theory, a gated trap gives different
results from independently gated particles. Their solutions all
requirek(t) in Eqg. (1) from the corresponding gated single-
particle, single-trap problem, however. The formalisms in
this paper and Ref2] are therefore particularly well adapted
to the_ Zhou-Szabo theory because they relate
k(s)=[s\(9)] ! for the gated and ungated problems.
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This article clarifies some points in gating theory by em-essary. The physical interpretation of E@) also naturally
phasizing trapping rates instead of Green’s functighs4]. emphasized trapping opportunities, a concept already found
For example, Eq(7) requires that the system regenerate onlyuseful for analyzing the blocking of viral attachmdmtl].
when the particle is at a trap. Regeneration at other positionEhese observations may further simplify the theories of
(e.g., as in a fully Markovian particle movemegiig unnec- blocking and gating.
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